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NOMENCLATURE 

= - ( 1/26)y:/yt, dimensionless ; 
specific heat ; 
thermal conductivity; 
constant value of (d’y/dt’) t (dy/d@, K # 0; 
latent heat of fusion ; 
= y,,yJy:, dimensionless ; 
= yoy, [area/time] ; 
radius ; 

= y* E y, + yf/y, [length]; 
time ; 
time required for complete solidification to 
occur ; 
temperature at radius r at time t[deg] ; 
solidification temperature [deg] ; 
radial location of moving phase boundary 
[length] ; 
= [d”y(t)/dt”],,, [length/(time)“] ; 

= YO + Y?/YZ Clewthl. 

Greek symbols 
6, = k/pc = thermal diffusivity ; 

P, density. 

INTRODUCTION 
PROBLEMS OF the solidification of spheres are of interest in 
foundary practice and in the freezing of raindrops, but 
closed form solutions to such problems are not to be found 
in standard texts [l]. We state the solidification problem in 
precise mathematical form, present an exact closed form 
solution for the temperature distribution, and obtain a 
good correlation of experimental data on freezing front 
motion. 

THE PROBLEM 

Radial heat conduction in the frozen outer shell of a 
solidifying sphere is governed by the following partial 
differential equation : 

(a/&) {4nr2 [-k (W/h)]} + 4nr2 [PC (aU/&)] = 0. (1) 

Here U(r, t) is the temperature in the frozen shell at radius r 
attimet,r C yo; - k(dU/&) is the heat conduction rate per 
unit area at radius r at time t; 4nrZ is the surface area of a 
sphere of radius r. Solidification is assumed to occur at the 
constant temperature U*. The radial location r = y(t) of 
the moving solidification front is therefore defined by the 
implicit relation 

U(r, t) = U* = constant, at r = y(t). (2) 

Movement of a solidification front at a rate dy/dt is accom- 
panied by the release of heat energy at a rate ((4ny’)pL(dy/ 
dt)l, where 47ry’ is the surface area of the solidification front 
and L is the latent heat of fusion. The energy released during 
solidification must be removed from the solidification front 
by heat conduction. The heat-conduction rate at radius r is 
equal to the product of the negative temperature gradient 
-au/&, of the thermal conductivity k, and of the area 
4ar2, so 

j4nr2[-k(XJ/&)]/ 2 ((4ny’)pL(dy/dt)l. at r = y(t). (3a) 

An inequality is used because the heat-conduction rate in 
the solid must be large enough to allow the removal of the 
latent heat plus the removal of any heat conducted to the 
solidification front from the liquid at the center of the 
sphere. 

Condition (3a) is now simplified by assuming that the 
entire sphere is initially composed of liquid which is at the 
solidification temperature U*, this corresponding to the 
absence of superheat. With this assumption, the temperature 
is always equal to U* in the liquid region r < v(t). There 
can then be no heat conduction from the isothermal liquid 
to the solidification front so condition (3a) becomes an 
equality. The equality can be divided by 47ry’ to obtain 

I-k(W/&)J = lpL(dy/dt)[, at r = y(t). (W 

THE SOLUTION 

We can obtain a closed form solution to U(r, t) if we 
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assume 123 that the acceleration d2y/dt2 is equal to 

K(dy/d@, with K = constant. Repeated integration of the 

assumed relation yields 

Y(l) = Yo + (Y:lY*)cI - J(l - 2Y*rlY,)l, (4) 

with y, = Ky: = constant # 0. The constants y,, y,, yz 

are, respectively, the radius, velocity, and acceleration of 

the spherical solidification front at time t = 0. The initial 

radius y, is of course just equal to the radius of the spherical 

casting. Both y, and y, are arbitrary in magnitude, except 

that y, # 0.t Now define 

Bz = (- V~@Y:/Y, (5) 

where 6 is the thermal diffusivity. Then it may be verified 

by differentiation that the following [2] is the solution of 

equation (1) which satisfies the delinition (2), the boundary 

condition (3b), and the equation-of-motion (4): 

U(r, t) = U* - (2L/c) B exp [B’] I(r, tj, y, 2 r 2 y(t). 
@a) 

where 

I=B 
I(r. t) = (r*/r) j exp [ - 2’1 dZ 

z=B(r-r*),(>~i*, 

z=s 
+ B2(1 - r*/r) 1‘ Z-’ exp [-Z’] dZ (6b) 

z=B(r-r’),(V- V.1 

with (6~) 
r* E y* z y, + y:/y, = constant. 

It may be noted that this solution was obtained without 

any boundary condition peing prescribed at the surface of 

the spherical casting, i.e. without any boundary condition 

being prescribed at r = y, = y(0). We did not have the 

freedom to prescribe any condition at r = y, because we 

prescribed that the location of the solidification front be 

given by equation (4). The conditions at r = y. are fully 

determined by the solution (6). 

A CORRELATION OF DATA 

The existence of the closed form solution (6) is a theoretical 

justification for any attempt to use the relation for y(t) to 

correlate experimental data. Further, the solution (6) is of 

physical interest to the extent that the relation for y(t) can 

be used to correlate experimental data. For correlation 

purposes it is convenient to put that relation in the form 

t If yz = 0, we obtain the constant velocity case 

y(t) = y, + yrt. The closed form solution for that case 

is available elsewhere [3]. 

rY(r)lY,l = 1 + (l/P) 11 - Jr1 - 2P&lY?l)l1, (7a) 
where 

P = Y,Y*/Y: and Y = YOYl> (7b) 
so that 

PI4 = YzlY: = K and l/B’ = - 2&p/q) = - 26K. 

(7c) 

The constants p and q can be evaluated by choosing two 

values of y(t)/y,.for which t/y; is known. We choose two 

values which are representative of the data plotted by 

Schwartz [4] for the freezing of steel spheres. The two values 

are : 

y/y, = 0.80 at t/y; = 0.15 minIin’, (8a) 
and 

y/y, = 0.50 at t/y; = 050 minjin2. (8b) 

These values can be used with equation (7a) to show that 

and 
P = (20/7), q = - (1217) in*;min, (8~) 

[y(t)jy,] = 1 + (7i20) {l - J[l + (480/49)(t/y~)(in’.imin,lJ. 

(8d) 

Equation (8d) is a good correlation of the data plotted by 

Schwartz [4]. As a check, we compute the time T needed 

for a sphere to freeze all the way to the center. Setting 

y(T) = 0, we use equations (7a) and (8~) to obtain 

T/y; = - (p/2 + 1)/q = (17112) min/in’ = 1.42 miniin’. 

(9a) 

This result may be compared with the value obtainable from 

Chvorinov’s 1939 correlation of experimental data, namely 

[41 

T/y; = [12,5/(3)*] min/in’ = 1.39 min/in’. 

The agreement as to freezing time is excellent. 

(9b) 
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